MATH 2028 Honours Advanced Calculus II 2021-22 Term 1 Problem Set 10

due on Nov 29, 2021 (Monday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Gradescope on/before the due date. Please remember to write down your name and student ID. **No late homework will be accepted.**

Notations: We will use $\mathcal{A}^k(\mathbb{R}^n)$ to denote space of differential k-forms on \mathbb{R}^n .

Problems to hand in

1. Let $n=(n_1,n_2,n_3)\in\mathbb{R}^3$ be a unit vector and $v,w\in\mathbb{R}^3$ be orthogonal to n. Let

$$\omega = n_1 dy \wedge dz + n_2 dz \wedge dx + n_3 dx \wedge dy$$
.

Prove that $\omega(v, w)$ is the signed area of the parallelogram spanned by v and w (the sign being determined by whether $\{n, v, w\}$ forms a right-handed orthonormal basis for \mathbb{R}^3).

2. Let $g(\rho, \phi, \theta) : (0, \infty) \times (0, \pi) \times (0, 2\pi) \to \mathbb{R}^3$ be the spherical coordinates map, i.e.

$$g(\rho, \phi, \theta) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi).$$

Compute $g^*(dx \wedge dy \wedge dz)$.

- 3. We say that a k-form is closed if $d\omega = 0$ and exact if $\omega = d\eta$ for some (k-1)-form η .
 - (a) Prove that an exact form is closed. Is every closed form exact?
 - (b) Prove that if ω and ϕ are closed, then $\omega \wedge \phi$ is closed.
 - (c) Prove that if ω is exact and ϕ is closed, then $\omega \wedge \phi$ is exact.

Suggested Exercises

- 1. Suppose $\omega \in \Lambda^k(\mathbb{R}^n)^*$ and k is odd. Prove that $\omega \wedge \omega = 0$. Give an example to show that it does no hold when k is even.
- 2. Let $v, w \in \mathbb{R}^3$. Prove that $dx(v \times w) = dy \wedge dz(v, w)$, $dy(v \times w) = dz \wedge dx(v, w)$ and $dz(v \times w) = dx \wedge dy(v, w)$.
- 3. Can there be a function f so that df is the given 1-form ω (everywhere ω is defined)? If so, find f.
 - (a) $\omega = -y \, dx + x \, dy$
 - (b) $\omega = 2xy \, dx + x^2 \, dy$
 - (c) $\omega = y dx + z dy + x dz$
 - (d) $\omega = (x^2 + yz) dx + (xz + \cos y) dy + (z + xy) dz$

(e)
$$\omega = \frac{x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy$$

(f)
$$\omega = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

- 4. For each of the following k-forms ω , can there be a (k-1)-form η (defined wherever ω is) so that $d\eta = \omega$?
 - (a) $\omega = dx \wedge dy$
 - (b) $\omega = x \, dx \wedge dy$
 - (c) $\omega = z \, dx \wedge dy$
 - (d) $\omega = z \, dx \wedge dy + y \, dx \wedge dz + z \, dy \wedge dz$
 - (e) $\omega = x \, dy \wedge dz + y \, dx \wedge dz + z \, dx \wedge dy$
 - (f) $\omega = (x^2 + y^2 + z^2)^{-1} (x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy)$
- 5. Define $*: \mathcal{A}^1(\mathbb{R}^3) \to \mathcal{A}^2(\mathbb{R}^3)$ by

$$*(dx) = dy \wedge dz, \quad *(dy) = dz \wedge dx \quad \text{ and } \quad *(dz) = dx \wedge dy,$$

extending by linearity. If f is a smooth function, show that

$$d*(df) = \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}\right) dx \wedge dy \wedge dz.$$

- 6. Suppose $\omega \in \mathcal{A}^1(\mathbb{R}^n)$ and theres is a nowhere-zero function λ so that $\lambda \omega = df$ for some function f. Prove that $\omega \wedge d\omega = 0$.
- 7. In each of the following, compute the pullback $g^*\omega$ and verify that $g^*(d\omega) = d(g^*\omega)$:
 - (a) $g(v) = (3\cos 2v, 3\sin 2v), \omega = -y \, dx + x \, dy$
 - (b) $g(u,v) = (\cos u, \sin u, v), \ \omega = z \ dx + x \ dy + y \ dz$
 - (c) $g(u,v) = (\cos u, \sin v, \sin u, \cos v), \ \omega = (-x_3 dx_1 + x_1 dx_3) \land (-x_2 dx_4 + x_4 dx_2)$
- 8. Suppose that $k \leq n$. Let $\omega_1, \dots, \omega_k \in (\mathbb{R}^n)^*$ and suppose that $\sum_{i=1}^k dx_i \wedge \omega_i = 0$. Prove that there exist $a_{ij} \in \mathbb{R}$ such that $a_{ji} = a_{ij}$ and $\omega_i = \sum_{j=1}^k a_{ij} dx_j$.
- 9. Suppose $U \subset \mathbb{R}^m$ is open and $g: U \to \mathbb{R}^n$ is smooth. Prove that for any $\omega \in \mathcal{A}^k(\mathbb{R}^n)$ and $v_1, \dots, v_k \in \mathbb{R}^m$, we have

$$g^*\omega(a)(v_1,\cdots,v_k)=\omega(g(a))(Dg(a)v_1,\cdots,Dg(a)v_k).$$

Challenging Exercises

- 1. Prove that there is a unique linear operator $d: \mathcal{A}^k(\mathbb{R}^n) \to \mathcal{A}^{k+1}(\mathbb{R}^n)$ for all k such that
 - (1) $df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_j$ for all functions $f: \mathbb{R}^n \to \mathbb{R}$
 - (2) $d(f\omega) = df \wedge \omega + f d\omega$ for all functions $f: \mathbb{R}^n \to \mathbb{R}$ and $\omega \in \mathcal{A}^k(\mathbb{R}^n)$
 - (3) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$ for any $\omega \mathcal{A}^k(\mathbb{R}^n)$, $\eta \in \mathcal{A}^\ell(\mathbb{R}^n)$
 - (4) $d(d\omega) = 0$ for all $\omega \in \mathcal{A}^k(\mathbb{R}^n)$